s

i

= o
& &
b

The University of Hong Kong

How Machines Learn
(Without Being Taught)

Michael I. Shamos, Ph.D., J.D.
School of Computer Science
Carnegie Mellon University

THE UNIVERSITY OF HONG KONG FEBRUARY 26, 2018 © 2018 MICHAEL I. SHAMOS



Pittsburgly Post-Gazette reone s

As the artificial intelligence race heats up,
China is taking action to move toward its
goal of rapidly surpassing America

WASHINGTON — When a Google computer program beat the
world’s best player of an ancient Chinese board game last May, it
might have seemed like an incremental milestone.

But for some, the success of the program known as AlphaGo
marked more than a man-vs.-machine clash. It set up a broader
race between China and the United States over artificial
intelligence, a competition that could mold the future of
humankind just as the widespread arrival of electricity did in the

last century.

The stakes are high. Advances in artificial intelligence could add
trillions of dollars to a major economy and give an edge on the

battlefield, shifting empires and global power.



Machine Learning

e The computer Is incredibly fast, accurate and
stupid.
Man Is unbelievably slow, inaccurate and
prilliant.
The marriage of the two Is a challenge and
opportunity beyond imagination.

-- Stuart G. Walesh, author
and consultant
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Background

 Ph.D., Yale University (computer science, 1978)
e J.D., Duguesne University (law, 1981)
o Carnegie Mellon computer science faculty since 1975

 Visiting Professor, University of Hong Kong (2001- ),
Electronic Payment Systems

e Director, Master’s Program in eBusiness Technology,
roughly equivalent to HKU Ecom/Ilcomp

e Incoming Director, MS in Artificial Intelligence and
Entrepreneurship
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Machine Learning

e A computer program “learns” from experience
If its performance on a task improves based
on that experience.

-- paraphrased from Carnegie
Mellon Professor Tom Mitchell
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Machine Learning Examples
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Types of Machine Learning

No learning

— Static computer program. Always performs the
same way. Changes made by humans.

Supervised learning

— The program is given examples of inputs and
desired outputs. “Trains” itself to perform well.

Unsupervised learning

— Program given only inputs and must discover
patterns in the data.

Reinforcement learning

— Program is given only inputs, but gets rewards for
good outputs. Objective: maximize reward.



A Computational System
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Predicting Apartment Prices

Area in m?
# of rooms
Purchase price Predicted
Price Today

Purchase year

Which floor?

Classic non-learning approach: construct a model
of apartment prices and write a computer program

No learning. If the modelis inaccurate, we need a
new model and a new program
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Learning to Predict Apartment Prices

Input Xi: Output p;:
Area in m? Predicted
# of rooms price p;

Purchase price

Purchase year Error =p, — a
| |

Which floor?

Supervised learning approach: use a large number
M of actual price examples (X, actual price a,)

Compare the predicted price p to the actual price a,
and modify the program to reduce the error e = p-a



A “Neuron”

Weights:

The “neuron computes a
function of the sum of the
weighted inputs and
outputs the valueas Y

Inputs:
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Biological Basis of Neurons

SOURCE: QUORA.COM

THE UNIVERSITY OF HONG KONG FEBRUARY 26, 2018 © 2018 MICHAEL I. SHAMOS


https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network

A “Neural Network”

X1  ——— Outputs:
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A Neural Network is a
Computational System

—_— Y
System — Y,

;>Y|_



Neural Network for Price Estimation

Output
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Neural Networks Can Learn

A learning algorithm:

e Given an input and a known desired output,
run the neural network to see the actual
output

* Error = desired output — actual output

e Use the error to modify the weights in the
network

e This is called “training” the network
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Neural Networks Can Learn

ERROR IN OUTPUT
1 1S USED TO
ADJUST THE RED
WEIGHTS

ERROR IN OUTPUT
21SUSED TO
ADJUST THE
GREEN WEIGHTS

Input Values Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer
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Neural Networks Can Learn

¢ B ACKPROPAGATION

ERROR IN OUTPUT
1 1S USED TO
ADJUST THE RED
WEIGHTS

L |le----

L) |le==---

L3 o====
ERROR IN OUTPUT
2ISUSED TO
ADJUST THE
GREEN WEIGHTS

Input Values Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer
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What an Image Looks Like to a Machine

A sequence of red-green-blue (RGB) color intensity values
(0, 0, 0) = black

(255, 255, 255) = white

(255, 98, 89) = a shade of pink

224 = 16 million possible values for each pixel
For a 1000 x 1000 pixel image, 16 trillion possible inputs

SOURCE: DMYTRO FISHMAN
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Variations of Cat

SOURCE:POO KUAN HOONG
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Supervised Learning

SOURCE: DMYTRO FISHMAN
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Supervised Learning Application

SOURCE: E. ALPAYDIN
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Supervised Learning Application
Predicting Airline Ticket Prices
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Unsupervised Learning

* No training data

« Network must detect similarities or patterns in
the inputs
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Example: Clustering News Stories



Unsupervised News Clustering

SOURCE: HINTON & SALAKHUTDINOV



Unsupervised Image Recognition



Autoencoders

* [dea: “compress” patterns to represent them with fewer
features in a “code.” Train the net to reproduce the original
patterns just from the code.

e Gives a much more robust recognizer.



Autoencoders

Better: Add noise!

SOURCE: ARDEN DERTAT
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https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
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A Deep Neural Network
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Deep Neural Network

SOURCE: AMAX.COM


http://www.amax.com/blog/wp-content/uploads/2015/12/blog_deeplearning3.jpg

Deep Image Recognition

SOURCE: DATASKEPTIC
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https://dataskeptic.com/blog/episodes/2017/automated-feature-engineering

Application: Diagnosing Skin Cancer

o Stanford researchers collected 130,000 images of
skin lesions representing over 2,000 different
diseases

« Used the data as a training set on a deep neural
network using only pixels and disease labels as
Inputs

 Performs as well as expert dermatologists, better
than non-experts

* Projection: 6.3 billion smartphones by the year 2021

e Can provide low-cost universal access to diagnostic
procedures
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Application: Diagnosing Skin Cancer

Epidermal lesions Melanocytic lesions Melanocytic lesions (dermoscopy)
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SOURCE: EXTREMETECH.COM
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https://www.extremetech.com/extreme/243352-deep-learning-algorithm-diagnoses-skin-cancer-seasoned-dermatologists

SOURCE: EXTREMETECH.COM
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https://www.extremetech.com/extreme/243352-deep-learning-algorithm-diagnoses-skin-cancer-seasoned-dermatologists

Deep Learning Applications

e Uber estimates arrival time by training a neural
network on millions of previous trips

 UberEATS estimates food preparation time to allow
prediction of final delivery time

« Recommendation engines: Amazon, Netflix
(estimated value: 20B HKD)

e Google Maps: analysis of 80 billion street view
Images to recognize house numbers and street signs

 Facebook DeepFace facial recognition
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Everyone from government agencies to police forces are looking for software to track us in airports
or spot us in CCTV images. But much of this technology is developed behind closed doors — how
can we know if any of it really works?

To answer this question, the Intelligence Advanced Research Projects Activity (IARPA) and the US
National Institute of Standards and Technology (NIST) have been running the biggest face-
recognition competition to date.

The Face Recognition Prize Challenge tested two tasks: face verification and face search. Face
verification is what phone manufacturers such as Apple — whose iPhone X, out last week, can be
unlocked with your face — are trying to master. The software must say whether a face matches that
of a known person. Face search is the harder problem. It requires finding every image of a person
in a database of maybe millions of images.

The winner of the face-verification task was a company called Ntech whose FindFace product can
match a person’s face correctly 99.9 per cent of the time.
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Facebook DeepFace
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Reinforcement Learning
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Reinforcement Learning Example:
Atari Breakout

 Reward function is “Score”. number of targets
removed
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Google DeepMind Video

(play to 2:03)

THE UNIVERSITY OF HONG KONG FEBRUARY 26, 2018 © 2018 MICHAEL I. SHAMOS


https://www.youtube.com/watch?v=Ih8EfvOzBOY

Reinforcement Learning in Go

* In 2017, AlphaGo Master defeated the world
Go champion, Ke Jie. He called it “God.”

* A later version, AlphaGo Zero, can now beat
AlphaGo Master
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AlphaGo Zero

 No knowledge of Go except rules for legal
moves

 Reward function: number of stones remaining
at end of game

e AlphaGo Zero played a huge number of
games against itself to maximize its reward

e 1.6 million games per day
e Outputs were used to train a neural network
« Hardware cost: 25 million USD
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AlphaGo Zero Progress

SOURCE: DEEPMIND.COM
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https://deepmind.com/blog/alphago-zero-learning-scratch/

Elo Rating

AlphaGo Progress
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SOURCE: DEEPMIND.COM
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https://deepmind.com/blog/alphago-zero-learning-scratch/
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SOURCE: NORMSHIELD.COM
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https://www.normshield.com/machine-learning-in-cyber-security-domain-1-fundamentals/
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