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Machine Learning

• The computer is incredibly fast, accurate and 
stupid.  
Man is unbelievably slow, inaccurate and 
brilliant.  
The marriage of the two is a challenge and 
opportunity beyond imagination.

-- Stuart G. Walesh, author
and consultant
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Background

• Ph.D., Yale University (computer science, 1978)
• J.D., Duquesne University (law, 1981)
• Carnegie Mellon computer science faculty since 1975
• Visiting Professor, University of Hong Kong (2001- ), 

Electronic Payment Systems

• Director, Master’s Program in eBusiness Technology, 
roughly equivalent to HKU Ecom/Icomp

• Incoming Director, MS in Artificial Intelligence and 
Entrepreneurship
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Machine Learning

• A computer program “learns” from experience 
if its performance on a task improves based 
on that experience.

-- paraphrased from Carnegie 
Mellon Professor Tom Mitchell
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Machine Learning Examples



Types of Machine Learning

• No learning
– Static computer program.  Always performs the 

same way.  Changes made by humans.
• Supervised learning

– The program is given examples of inputs and 
desired outputs.  “Trains” itself to perform well.

• Unsupervised learning
– Program given only inputs and must discover 

patterns in the data.
• Reinforcement learning

– Program is given only inputs, but gets rewards for 
good outputs.  Objective: maximize reward.



A Computational System  

System… …

1x
2x

Nx

1y
2y

Ly1 2, ,..., Kh h h

( )1 2, ,..., Nx x x=x
( )1 2, ,..., Kh h h=h
( )1 2, ,..., Ly y y=y

Inputs:
Internal Variables:

Outputs:
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Predicting Apartment Prices

System
1 2, ,..., Kh h h

Area in m2

# of rooms
Purchase price
Purchase year

Which floor?
. . .

Predicted
Price Today

Classic non-learning approach: construct a model 
of apartment prices and write a computer program

No learning.  If the model is inaccurate, we need a 
new model and a new program
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Learning to Predict Apartment Prices

System
1 2, ,..., Kh h h

Area in m2

# of rooms
Purchase price
Purchase year

Which floor?
. . .

Predicted
price pi

Supervised learning approach: use a large number 
M of actual price examples (Xi, actual price ai)

Error = pi – ai

Compare the predicted price p to the actual price a, 
and modify the program to reduce the error e = p-a

Input Xi: Output pi:
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A “Neuron”

Inputs:

Weights:
The “neuron computes a 
function of the sum of the 
weighted inputs and 
outputs the value as Y
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Biological Basis of Neurons

SOURCE: QUORA.COM

https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
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A “Neural Network”

s

1x

2x

Nx

.

.

.

Inputs:

Outputs:



A Neural Network is a 
Computational System 

System… …1x
2x

Nx

1y
2y

Ly1 2, ,..., Kh h h

1x

2x

Nx

.

.

.
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Neural Network for Price Estimation

Output
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Neural Networks Can Learn

• Given an input and a known desired output, 
run the neural network to see the actual 
output

• Error = desired output – actual output
• Use the error to modify the weights in the 

network

• This is called “training” the network

A learning algorithm:
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Neural Networks Can Learn

ERROR IN OUTPUT 
1 IS USED TO 
ADJUST THE RED 
WEIGHTS

1

2

ERROR IN OUTPUT 
2 IS USED TO 
ADJUST THE 
GREEN WEIGHTS
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Neural Networks Can Learn

ERROR IN OUTPUT 
1 IS USED TO 
ADJUST THE RED 
WEIGHTS

1

2

ERROR IN OUTPUT 
2 IS USED TO 
ADJUST THE 
GREEN WEIGHTS

BACKPROPAGATION
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What an Image Looks Like to a Machine

SOURCE: DMYTRO FISHMAN

A sequence of red-green-blue (RGB) color intensity values
(0, 0, 0) = black
(255, 255, 255) = white
(255, 98, 89) = a shade of pink

224 = 16 million possible values for each pixel
For a 1000 x 1000 pixel image, 16 trillion possible inputs
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Variations of Cat

SOURCE:POO KUAN HOONG
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Supervised Learning

SOURCE: DMYTRO FISHMAN
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Supervised Learning Application

SOURCE: E. ALPAYDIN
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Supervised Learning Application
Predicting Airline Ticket Prices
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Unsupervised Learning

• No training data
• Network must detect similarities or patterns in 

the inputs



Example: Clustering News Stories



SOURCE: HINTON & SALAKHUTDINOV

Unsupervised News Clustering



Unsupervised Image Recognition



Autoencoders
• Idea: “compress” patterns to represent them with fewer 

features in a “code.”  Train the net to reproduce the original 
patterns just from the code.

• Gives a much more robust recognizer. 
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Autoencoders

SOURCE: ARDEN DERTAT

Better: Add noise!

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798


THE UNIVERSITY OF HONG KONG                                    FEBRUARY 26, 2018                                            © 2018 MICHAEL I. SHAMOS



THE UNIVERSITY OF HONG KONG                                    FEBRUARY 26, 2018                                            © 2018 MICHAEL I. SHAMOS

A Deep Neural Network



SOURCE: AMAX.COM

Deep Neural Network

http://www.amax.com/blog/wp-content/uploads/2015/12/blog_deeplearning3.jpg


SOURCE: DATASKEPTIC
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Deep Image Recognition

https://dataskeptic.com/blog/episodes/2017/automated-feature-engineering
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Application: Diagnosing Skin Cancer

• Stanford researchers collected 130,000 images of 
skin lesions representing over 2,000 different 
diseases

• Used the data as a training set on a deep neural 
network using only pixels and disease labels as 
inputs

• Performs as well as expert dermatologists, better 
than non-experts

• Projection: 6.3 billion smartphones by the year 2021
• Can provide low-cost universal access to diagnostic 

procedures
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Application: Diagnosing Skin Cancer

SOURCE: EXTREMETECH.COM

https://www.extremetech.com/extreme/243352-deep-learning-algorithm-diagnoses-skin-cancer-seasoned-dermatologists
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SOURCE: EXTREMETECH.COM

https://www.extremetech.com/extreme/243352-deep-learning-algorithm-diagnoses-skin-cancer-seasoned-dermatologists


THE UNIVERSITY OF HONG KONG                                    FEBRUARY 26, 2018                                            © 2018 MICHAEL I. SHAMOS

Deep Learning Applications
• Uber estimates arrival time by training a neural 

network on millions of previous trips
• UberEATS estimates food preparation time to allow 

prediction of final delivery time
• Recommendation engines: Amazon, Netflix 

(estimated value: 20B HKD)
• Google Maps: analysis of 80 billion street view 

images to recognize house numbers and street signs
• Facebook DeepFace facial recognition
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Facebook DeepFace
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Reinforcement Learning
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Reinforcement Learning Example:
Atari Breakout

• Reward function is “Score”: number of targets 
removed
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Google DeepMind Video

(play to 2:03)

https://www.youtube.com/watch?v=Ih8EfvOzBOY
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Reinforcement Learning in Go

• In 2017, AlphaGo Master defeated the world 
Go champion, Ke Jie.  He called it “God.” 

• A later version, AlphaGo Zero, can now beat 
AlphaGo Master
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AlphaGo Zero

• No knowledge of Go except rules for legal 
moves

• Reward function: number of stones remaining 
at end of game

• AlphaGo Zero played a huge number of 
games against itself to maximize its reward

• 1.6 million games per day
• Outputs were used to train a neural network
• Hardware cost: 25 million USD
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AlphaGo Zero Progress

SOURCE: DEEPMIND.COM

https://deepmind.com/blog/alphago-zero-learning-scratch/
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AlphaGo Progress

SOURCE: DEEPMIND.COM

https://deepmind.com/blog/alphago-zero-learning-scratch/
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SOURCE: NORMSHIELD.COM

https://www.normshield.com/machine-learning-in-cyber-security-domain-1-fundamentals/
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