How Do Driverless Cars Work?

Michael I. Shamos, Ph.D., J.D.
School of Computer Science
Carnegie Mellon University

Background

- Ph.D., Yale University (computer science, 1978)
- Developed Computational Geometry, a basic driverless car technology
- J.D., Duquesne University (law, 1981)
- Carnegie Mellon computer science faculty since 1975
- Visiting Professor, University of Hong Kong (2001-)
- Director, Master's Program in eBusiness Technology
- Annual course, "Internet of Things"
- Expert witness in over 220 court cases involving computer technology, including traffic surveillance

Ford to pump \$1B into Al for driverless cars

Former Google and Uber engineers will work with Ford on a system for 2021
Ford plans to spend US\$1 billion over the next five years on the development of an artificial intelligence system for driverless cars.

Ford will investment the money in Argo AI, a start-up founded by former leaders from Google and Uber's self-driving car research units, and they will work toward the goal of a system that's ready for deployment in 2021.

The research will be focused on a virtual driver system capable of operating at what's called "SAE level 4." It's one of five levels defined for self-driving cars and specifically describes an autonomous car that's capable of completely controlling the vehicle in almost any condition. After it has been engaged, drivers do not need to pay attention to the driving.

Argo Al will have about 200 employees working on the project once it gets up and going.

Baidu restructure focuses on intelligent driving

Search engine Baidu has announced it will establish an intelligent driving group，headed by company president and artificial intelligence expert Lu Qi．

The move signals Baidu＇s latest push to transform itself into an Al－first company，days after chairman Robin Li flagged artificial intelligence as a strategic priority．

The newly formed group will comprise three business units focusing on autonomous driving， intelligent automobile，as well as internet of vehicles．
＂Self－driving，intelligent transportation and internet of vehicles are major forces for industrial upgrade and they define Baidu＇s business strategy and core competence，＂a company statement said．

Future of Driverless Cars

COPYRIGHT ©2O14 JIM HAAS

Cars Aren't Safe

- US 2010: 6 million car crashes, 93\% human error
- World: 1.3 million deaths per year; 50 million injuries
- 4Ds: Distraction, Drunkenness, Drowsiness, Driver error
- Expected decrease in auto insurance premiums from driverless cars: 75\%

Driverless Car History

1925 - Houdina Radio Control Co. demonstrated the "American Wonder" on $5^{\text {th }}$ Ave. in NY
1939 - Norman Bel Geddes guided car at the NY World's Fair
1950s - General Motors \& Radio Corporation of America test automated highways
1990s - VaMP driverless car at Univ. of Munich

1995 - Carnegie Mellon Navlab car
 goes 5000 km across the
U.S. autonomously

Driverless Car History

2009 - Google begins driverless car project

2010 - Four cars drive 16,000 km from Parma (Italy) to Shanghai
2013 - VisLab (Univ. of Parma) vehicles navigate downtown Parma (Italy)
2016 - Uber deploys 20 driverless cars (free) in Pittsburgh (US)

Problems a Car Faces

- Where am I? (location)
- Where should I be going? (route planning)
- What is that in the road?
- What are the other cars doing?
- Am I going to hit something?
- What does that sign say?
- What is the speed limit?
- Can I change lanes?
- Is that a policeman ahead?

Weather

Solution

- Plan a route to the destination
- Generate a "model" of the surroundings
- Requires multiple types of sensors
- Continuously monitor conditions
- Communicate with nearby cars
- Communicate with the transportation infrastructure
- Receive and process road information

VIDEO:

Priscilla Knox:
 A Ride in the Google Self-Driving Car

Car Sensors

Car Sensors

Lane Keeping

Adaptive Cruise Control \& Traffic Jam Assist

Autonomous Emergency Braking \& Emergency Steer Assist

Parking Assist

Front/Rear Collision Avoidance

Object Detection,
Tracking, Classification

Blind Spot Detection

Cross Traffic Alert \&
Intersection Collision Avoidance

Scene Capture \& Accident Reconstruction

Car Sensors

VIDEO:

Chris Urmson: TED Talk How a Driverless Car Sees the Road

What the Car Sees

LIDAR

- Calculates distance from the car based on speed of light
- 64 infrared, harmless laser beams rotate at 900 rpm to generate a 3D image.
- 150,000 pulses per second
- Range: 200 meters
- Accuracy: 67 picoseconds = 1 cm !
- Sees through fog

Vision by LIDAR

LIDAR Rotating Mirror

Tilting mirror
Optical rotary encoder

Servo motor

Laser source

LIDAR Sensing Speed

Front Near-Vision Camera

- See pedestrians \& other vehicles
- Detects and records information about road signs and traffic lights
- Differentiates people, bicycles \& cars
- Interprets gestures, e.g., hand signals

Optical Cameras

- Mono or stereo-vision
- Watch nearby vehicles, lane markings, speed signs, high-beam lights etc.
- Warn the driver when the car is in danger of a collision with a pedestrian or an advancing vehicle.

- Advanced camera systems predict object trajectories.

What the Car Sees

IDENTIFY STATIONARY OBJECTS

IDENTIFY PEDESTRIANS, THEIR DIRECTION AND SPEED

IDENTIFY
VEHICLES,
THEIR DIRECTION
AND SPEED

Radar

- Works in all weather conditions
- Handles many functions:

GPS Positioning

- GPS estimates may be off by
 several metres.
- GPS data is compared with sensor map data previously collected from the same location to update the vehicle's internal map with new positional data.

Man v. Machine Accuracy

- GPS coordinate accuracy 5-10 meters insufficient for driving
- Much more detail is needed, obtained from satellites and street scanning. Illegal in PRC.
- Facial recognition
- Human error: 0.8 percent
- Machine error: 0.23 percent
- Visibility
- Human: 50 meters
- Machine: 200 meters

Recognizing Lanes

Learning to Read Signs

Reading Signs by Neural Networks

How Does the Car Respond?

V2V Communications

Vehicle-to-Vehicle Cloud

SOURCE: $33^{\text {RD }}$ SQUARE

V2V, V2I, I2I Communications

RSU = ROADSIDE UNIT
TMC = TRAFFIC MESSAGE CHANNEL

Driverless Benefits

Crash
Elimination

Travel Time Dependability

Reduced Need for New Infrastructure

Productivity
Improvement

Improved Energy
Efficiency

New Business
Models \&
Scenario

Effect of Driverless Cars

Ethical Issues

> What should the car do?
> What should the bus do?
> Should they negotiate?
> Suppose it's a school bus?

Vehicle Hacking Potential

Also: jamming radar, spoofing V2I and V2V, blinding LIDAR with IR

Hong Kong not ready for trial of driverless cars, government says, as Singapore aims for fully autonomous taxi fleet by 2018

Experts claim driverless taxis could replace cabbies in less than a decade, but government says hardware and software advancements likely needed first

Driverless technology is not yet developed enough to justify the government facilitating a trial in Hong Kong, the Transport and Housing Bureau has told the Post.

The bureau said it was aware of the use of driverless cabs in other places and would continue to keep a close eye on such technology, but was not yet ready to implement any trial in Hong Kong.
"As far as Hong Kong is concerned, the government keeps an open mind and will facilitate the trial and development of such technology subject to safety and legal considerations, which has to be assessed on a case-by-case basis," a bureau spokeswoman said.

$\mathbf{Q}_{8} \mathbf{A}$

