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Mathematical DiscoveryMathematical Discovery

• Where do theorems come from?Where do theorems come from?

• We are never taught this.  We learn to prove theorems, not 
invent them

• Some theorems are easy to conjecture and easy to prove

– is irrational (not a fraction, known to Plato, 360 B.C.)2
• Theorem easy to conjecture, hard to prove (hundreds of years)

– Four-color theorem (124 years)

– Fundamental theorem of algebra (every non-constant 
polynomial has at least one zero).  Took 180 years.

F t’ l t th (357 )– Fermat’s last theorem (357 years)
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Mathematical Discovery

• Difficult to conjecture; easy to prove

H d d h i l h– Hadamard three-circles theorem

• Difficult to invent; difficult to prove

– Gödel’s Theorem (there are theorems, i.e., true statements, 
which have no proof)

Riemann hypothesis– Riemann hypothesis

UNIVERSITY OF HONG KONG                                         MARCH 2, 2009 COPYRIGHT © 2009 MICHAEL I. SHAMOS

Outline

• The problem

– Closed-form expression for 20205690311
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• The approach

– Build a catalog of real-valued expressions indexed by first 20 
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– Equivalent expressions will “collide”

Look up 1 20205690315959428539– Look up 1.20205690315959428539

• The discoveries

– The Partial Sum Theorem

– Overcounting functions

– How many ways can n be expressed as an integer power k j ?
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The ProblemThe Problem
• Find a closed form expression for odd values of the zeta function: 
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• In 1739, Euler found an expression for all even values of s and 
showed that:
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Concept of the Catalog
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Other CatalogsOther Catalogs

• Sloane’s Encyclopedia of Integer Sequences• Sloane s Encyclopedia of Integer Sequences

– Terrific, but for integer sequences, not reals

Pl ff ’ I t• Plouffe’s Inverter

– Huge (215 million entries), but not “natural” 
expressions from actual mathematical workexpressions from actual mathematical work

• Simon Fraser Inverse Symbolic Calculator

– 50 million constants
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Discovery A
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• Is this a coincidence?

f f ?• Why the factor of 2?

• Is there a general principle at work?
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Observation
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The Partial Sum Theorem (New)

• Given a sequence S of complex numbers s(k), let 

be the sequence of partial sums of S∑
n

kt )()( be the sequence of partial sums of S.

• Given a function f, if certain convergence criteria are satisfied, 
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Partial Sum Functions

• Many sequences are partial sum functions: 
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• Actually, every sequence is the partial sum function of some other 
sequence
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Some Partial Sum Transforms
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Partial Sum Theorem (Proof)
• Consider the upper triangular matrix :),()(, jijfism ji ≤=
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The Convergence CriteriaThe Convergence Criteria
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Proof: By Markoff’s theorem on convergence of double seriesProof: By Markoff s theorem on convergence of double series
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Further Applications
• The number of perfect n th powers ≤ k is 

• The number of positive integers powers of a ≤ k is
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• Therefore, by inspection,
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The Partial Integral Theorem *

• Given a function s(x), let t(y) be the “left integral” of s :                            

∫
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Discovery B
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Overcounting Functions
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Examples
• Let g(k, j) = k + j .   How many ordered pairs (k, j) of natural 

numbers give k + j = n? Answer: K (n) = n 1numbers give k + j  = n?    Answer:  Kk+j (n)  =  n - 1

• Therefore, by inspection,

)()1(
111

)(

1

1
1

11 1

ss
nnn

n

jk n
ss

n
s

j k
s

ζζ −−=⎟
⎠
⎞

⎜
⎝
⎛ −=

−
=

+ ∑∑∑∑
∞

=
−

∞

=

∞

=

∞

=

8
)(

2

1

2

)( 2πζζ
=

−
=

+ ∑∑∑
∞∞ ∞

+ njk
n

njk

822 11 1
∑∑∑

== =
+

n
n

j k
jk

( ) 11
11 −∑∑∑

∞∞ ∞

ee
n ( ) 11

!)!( 11 1

=−−==
+ ∑∑∑

== =

ee
njk nj k

UNIVERSITY OF HONG KONG                                         MARCH 2, 2009 COPYRIGHT © 2009 MICHAEL I. SHAMOS

Examples
• Let g(k, j) = k • j .   How many ordered pairs (k, j) give k • j = n?    

Answer: Kk•j (n) = d(n), the number of divisors of n .

• Therefore, by inspection
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Enumerating Non-Trivial Powers
• Let g(k, j) = k j.

• How many ordered pairs (k j) give k j = n?How many ordered pairs (k, j) give k  n?
Or, how many ways K(n) can n be expressed as a 
positive integral power of a positive integer?positive integral power of a positive integer?

• Example: 16 = 161  = 82 = 24 , so K(16) = 3

If n is prime K(n) 1• If n is prime, K(n) = 1

• If n is a square, then, K(n) ≥ 2;      36 = 361  = 62 

• But many non-primes have K(n) = 1 also, such as
6, 8,10, 11, 12, 14, 15, 18, 20, 21, 22, 24, 26, 27,
45 = 32 • 5;    55125 = 32 • 53 • 72

• How to compute K(n)?
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Enumerating Non-Trivial Powers

• Let                              be the prime factorization of n...21

21
ee ppn =

• n can be a non-trivial power of an integer > 1 iff
G(n) = gcd(e1, e2, . . . ) exceeds 1; otherwise K(n) = 1.

S b > 1 di id G( ) Th• Suppose b > 1 divides G(n).  Then                                     ,
where each of the ei /b is a natural number, so n is the b th power 
of a natural number

• Suppose c > 1 does not divide G(n).  Then at least one of the 
exponents ei /c is not a natural number and n is not the c th power 
of a natural number.  Therefore,
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A Remarkable Series
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Goldbach’s Theorem

• In 1729, Christian Goldbach proved that
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Mobius Function Review

The Mobius function, μ (k), useful in combinatorics, was defined in 1831 
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μ (2) = -1; μ (3) = -1; μ (4) = 0; μ (6) = μ (2 • 3) = 1 
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Discovery C

For c > 1 real and p prime,
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Results from Counting Functions

The counting function Kmax(n) of max(k, j) is 2n-1.  So 
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The First-Digit PhenomenonThe First Digit Phenomenon

• Given a random integer, what is the probability that its g , p y
leading digit is a 1?

• Answer: depends on the distribution from which k is p
chosen.

• If k is chosen uniformly in [1, n], then let p(d, n) be the y [ ] p( )
probability that the leading digit of k is d

• For n = 19+, 5/9 < p(1,n) < .579; 1/19 ≤ p(9,n) < 1/18

• For n = 9+, p(1,n) = 1/9; p(9,n) = 1/9

• The “average” is log10(1+1/d)The average  is log10(1 1/d)

• {.301, .176, .124, .097, .079, .066, .058, .051, .046}
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Relative Digit Frequency (Benford’s Law)g q y ( )
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First-Digit Phenomenon
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Major Ideas

• Theorems can be discovered with the aid of machines

F th ti i• For mathematicians:
– How to populate the catalog

How to generalize from discoveries– How to generalize from discoveries

• For computer scientists:
U i b li i l ti t– Use in symbolic manipulation systems

• For data miners:
H t i th t l i h t fi d l ti– How to mine the catalog, i.e. how to find new relations

• For statisticians:
H t th f t th t ddfP ∫∫

∞∞

)()()()(– How to use the fact that

where P is the cumulative distribution of density p

dxxgxpdyyfyP ∫∫ =
00

)()()()(
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A Parting PhilosophyA Parting Philosophy

“The object of mathematical rigor is toThe object of mathematical rigor is to 
sanction and legitimize the conquests of 
intuition and there was never any otherintuition, and there was never any other 
object for it.”

Jacques HadamardJacques Hadamard
(as quoted by Borel in 1928)
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