Discoveries in Experimental Mathematics

Michael I. Shamos School of Computer Science Carnegie Mellon University

UNIVERSITY OF HONG KONG

MARCH 2, 2009

COPYRIGHT © 2009 MICHAEL I. SHAMOS

Mathematical Discovery

- Where do theorems come from?
- We are never taught this. We learn to prove theorems, not invent them
- Some theorems are easy to conjecture and easy to prove $-\sqrt{2}$ is irrational (not a fraction, known to Plato, 360 B.C.)
- Theorem easy to conjecture, hard to prove (hundreds of years)
 - Four-color theorem (124 years)
 - Fundamental theorem of algebra (every non-constant polynomial has at least one zero). Took 180 years.
 - Fermat's last theorem (357 years)

Mathematical Discovery

- Difficult to conjecture; easy to prove •
 - Hadamard three-circles theorem
- Difficult to invent: difficult to prove
 - Gödel's Theorem (there are theorems, i.e., true statements, which have no proof)
 - Riemann hypothesis

UNIVERSITY OF HONG KONG

MARCH 2, 2009

COPYRIGHT © 2009 MICHAEL I. SHAMOS

Outline

The problem

- Closed-form expression for $\zeta(3) = \sum_{k=1}^{\infty} \frac{1}{k^3} \approx 1.2020569031...$

- The approach
 - Build a catalog of real-valued expressions indexed by first 20 digits
 - Equivalent expressions will "collide"
 - Look up 1.20205690315959428539

1

- The discoveries
 - The Partial Sum Theorem
 - Overcounting functions
 - How many ways can *n* be expressed as an integer power k^{j} ?

- Expression for
$$\sum_{k=1}^{\infty} \frac{1}{2^{2^k}}$$

The Problem

• Find a closed form expression for odd values of the zeta function:

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}$$

• In 1739, Euler found an expression for all even values of *s* and showed that:

 $\zeta(2s)$ is a rational multiple of π^{2s}

$$\zeta(2) = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{1}{6}\pi^2; \qquad \qquad \zeta(4) = \sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{1}{90}\pi^4$$

• BUT: no expression is known for even a single odd value, e.g.

$$\zeta(3) = \sum_{k=1}^{\infty} \frac{1}{k^3}$$

(this is the only odd value even known to be irrational)

```
UNIVERSITY OF HONG KONG
```

```
MARCH 2, 2009
```

COPYRIGHT © 2009 MICHAEL I. SHAMOS

Concept of the Catalog

 $1.0000009539\ 6203387279\ 41 \approx \zeta(20) = \frac{176411 \pi^{20}}{1531329465\ 290625}$ $1.08232323\ 3711138191\ 5160 \approx \zeta(4) = \frac{\pi^4}{90}$ $1.20202249\ 1761611317\ 1527 \approx \frac{1}{2Catalan-1}$ $1.20205690\ 3159594285\ 3997 \approx \zeta(3) = ?$ $1.64493406\ 6848226436\ 4724 \approx \zeta(2) = \frac{\pi^2}{6}$ $0.91596559\ 4177219015\ 05 \approx Catalan = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}$

Other Catalogs

- Sloane's Encyclopedia of Integer Sequences
 - Terrific, but for integer sequences, not reals
- Plouffe's <u>Inverter</u>
 - Huge (215 million entries), but not "natural" expressions from actual mathematical work
- Simon Fraser Inverse Symbolic Calculator
 - 50 million constants

UNIVERSITY OF HONG KONG

MARCH 2, 2009

COPYRIGHT © 2009 MICHAEL I. SHAMOS

Discovery A

$$\sum_{k=1}^{\infty} \frac{\pi(k)}{2^{k}} = 2 \sum_{p \text{ prime}}^{\infty} \frac{1}{2^{p}}$$

where $\pi(k)$ is the number of primes $\leq k$

- Is this a coincidence?
- Why the factor of 2?
- Is there a general principle at work?

- In fact,

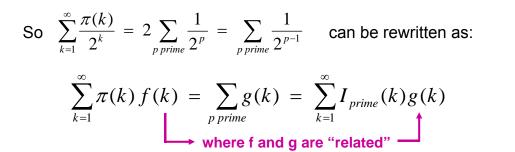
$$\sum_{k=1}^{\infty} \frac{\pi(k)}{a^k} = \frac{a}{a-1} \sum_{p \text{ prime}}^{\infty} \frac{1}{a^p}$$

Observation

 $\pi(k)$ is a partial sum function, i.e., $\pi(k) = \sum_{\substack{p \text{ prime} \\ p \leq k}} 1$

More generally, $\pi(k)$ is the partial sum function of the indicator function of the property "primeness":

 $\pi(k) = \sum_{j=1}^{k} I_{prime}(j), \text{ where } I_{prime}(j) = \begin{cases} 1, j \text{ prime} \\ 0, \text{ otherwise} \end{cases}$



UNIVERSITY OF HONG KONG

MARCH 2, 2009

COPYRIGHT © 2009 MICHAEL I. SHAMOS

The Partial Sum Theorem (New)

• Given a sequence S of complex numbers s(k), let

 $t(n) = \sum_{k=1}^{n} s(k)$ be the sequence of partial sums of S.

• Given a function *f*, if certain convergence criteria are satisfied,

then

$$\sum_{k=1}^{\infty} t(k) f(k) = \sum_{j=1}^{\infty} s(j) g(j)$$
PARTIAL
PARTIAL
SUMS OF $s(j)$

where

$$g(j) = \sum_{k=j}^{\infty} f(k)$$

(the partial tails of f) is a transform of f independent of s & t

Partial Sum Functions

• Many sequences are partial sum functions:

 $H(n) = \sum_{k=1}^{n} \frac{1}{k}$ the harmonic function $H^{(s)}(n) = \sum_{k=1}^{n} \frac{1}{k^{s}}$ generalized harmonic function $1 - 2^{-n} = \sum_{k=1}^{n} \frac{1}{2^{n}}$ $6 - \frac{n^{2} + 4n + 6}{2^{n}} = \sum_{k=1}^{n} \frac{k^{2}}{2^{k}}$ $\log \Gamma(n) = \sum_{k=1}^{n} \log k$

Actually, every sequence is the partial sum function of some other sequence

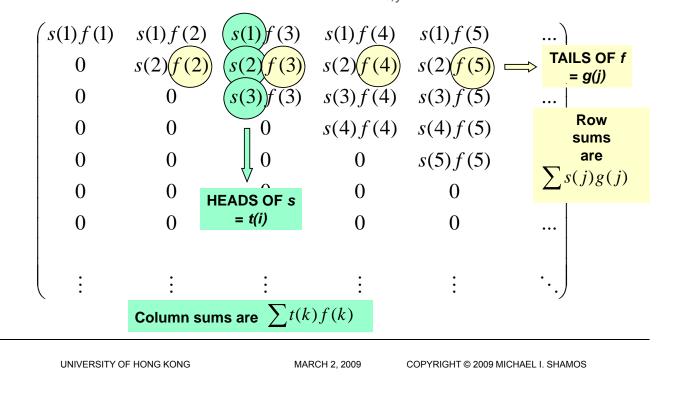
UNIVERSITY OF HONG KONG	MARCH 2, 2009	COPYRIGHT © 2009 MICHAEL I. SHAMOS

Some Partial Sum Transforms

$f(k) \Leftrightarrow$	$g(j) = \sum_{k=j}^{\infty} f(k)$	f(k)	$\Leftrightarrow g(j)$
$\frac{1}{a^k}$	$\frac{1}{(a-1)a^{j-1}}$	$\frac{1}{k!}$	$e\left(1 - \frac{\Gamma(j,1)}{\Gamma(j)}\right)$
$\frac{1}{k^2 + k}$	$\frac{1}{j}$	$\frac{k^2+k-1}{(k+2)!}$	$\frac{j}{(j+1)!}$
$\frac{1}{k^3 - k}$	$\frac{1}{2j(j-1)}$	$\frac{\sin k}{a^k}$	$\frac{\sin(1-j) + a \sin j}{a^{j-1}(1+a^2 - 2a\cos 1)}$
$\frac{\left(-1\right)^{k}}{k^{2}-1}$	$\frac{(-1)^j}{2j(j-1)}$	$\frac{1}{k a^k}$	$\beta\left(\frac{1}{a}, j, 0\right)$
$\prod_{i=0}^{n} \frac{1}{(k+i)}$	$\frac{1}{n-1} \left(\sum_{i=1}^{n} (-1)^{i} S_{1}(n,i) j^{i-1} \right)^{-1}$	$\frac{1}{\binom{2k}{k}}$	$\frac{\sqrt{\pi} \Gamma(j)}{4^{j} \Gamma(j+\frac{1}{2})} {}_{2}F_{1}(1, j+1, j+\frac{1}{2}, \frac{1}{2})$

Partial Sum Theorem (Proof)

• Consider the upper triangular matrix $m_{i,j} = s(i)f(j), i \leq j$:



The Convergence Criteria

$$\sum_{k=1}^{\infty} t(k)f(k) = \sum_{k=1}^{\infty} s(k)g(k) \quad \text{iff}$$

- 1. All sums g(k) converge
- 2. $\sum_{k=1}^{\infty} s(k)g(k)$ converges; and
- 3. $\lim_{n \to \infty} t(n)g(n) = 0$

Proof: By Markoff's theorem on convergence of double series

Further Applications

- The number of perfect n^{th} powers $\leq k$ is $\left|\sqrt[n]{k}\right|$
- The number of positive integers powers of $a \le k$ is $\lfloor \log_a k \rfloor$
- Therefore, by inspection,

$$\sum_{k=2}^{\infty} \frac{\lfloor \log_a k \rfloor}{k^2 + k} = \sum_{\substack{n \text{ a positive } \\ power of a}} \frac{1}{n} = \sum_{j=1}^{\infty} \frac{1}{a^j} = \frac{1}{a-1} \star$$

$$\sum_{k=1}^{\infty} \frac{\lfloor n/k \rfloor}{k^2 + k} = \sum_{\substack{n \text{ a perfect } \\ m^{th} \text{ power}}} \frac{1}{n} = \sum_{j=1}^{\infty} \frac{1}{j^m} = \zeta(m) \star$$

$$\sum_{k=2}^{\infty} \frac{2\pi(k)}{k^3 - k} = \sum_{p \text{ prime }} \frac{1}{p(p-1)} \star$$

$$\sum_{k=2}^{\infty} \frac{(2k+1)\pi(k)}{k^2(k+1)^2} = \sum_{p \text{ prime }} \frac{1}{p^2} \star$$

UNIVERSITY OF HONG KONG

MARCH 2, 2009

COPYRIGHT © 2009 MICHAEL I. SHAMOS

The Partial Integral Theorem *

• Given a function *s*(*x*), let *t*(*y*) be the "left integral" of *s* :

$$t(y) = \int_0^y s(x) \, dx$$

• Given a function *f*(*y*), if certain convergence criteria are satisfied,

then

$$\int_{0}^{\infty} f(y) f(y) dy = \int_{0}^{\infty} s(x) g(x) dx$$

$$\int_{0}^{0} \text{LEFT INTEGRAL}$$

 $g(x) = \int_{-\infty}^{\infty} f(y) \, dx$

where

(the right integral of f) is a transform of f independent of s & t

Discovery B

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(k+j)^3} = \zeta(2) - \zeta(3) = \sum_{k=1}^{\infty} \left(\frac{1}{k^2} - \frac{1}{k^3}\right)$$

•
$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(k+j)^3} \text{ must exceed } \sum_{k=2}^{\infty} \frac{1}{k^3} = \zeta(3) - 1 ,$$

but by how much?

- Is there a general principle at work?
 - In fact, $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(k+j)^s} = \zeta(s-1) - \zeta(s)$

```
UNIVERSITY OF HONG KONG
```

```
MARCH 2, 2009
```

COPYRIGHT © 2009 MICHAEL I. SHAMOS

Overcounting Functions

Let
$$S = \sum_{k=1}^{\infty} f(k)$$
 and $S^+ = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} f(g(k,j))$,

where g(k, j) ranges over the natural numbers

- 1. Every term of S^+ occurs at least once in S.
- 2. In general, S^+ overcounts S, since some terms of S occur many times in S^+
- 3. If $K_g(k)$ is the number of times f(k) is included in S^+ , then

$$S^{+} = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} f(g(k, j)) = \sum_{k=1}^{\infty} K_{g}(k) f(k)$$

where $K_g(k)$ depends only on g and not on f.

Examples

- Let g(k, j) = k + j. How many ordered pairs (k, j) of natural numbers give k + j = n? Answer: K_{k+j}(n) = n 1
- Therefore, by inspection,

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(k+j)^s} = \sum_{n=1}^{\infty} \frac{n-1}{n^s} = \sum_{n=1}^{\infty} \left(\frac{1}{n^{s-1}} - \frac{1}{n^s}\right) = \zeta(s-1) - \zeta(s)$$
$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{\zeta(k+j)}{2^{k+j}} = \sum_{n=1}^{\infty} \frac{n-1}{2^n} \zeta(n) = \frac{\pi^2}{8}$$
$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(k+j)!} = \sum_{n=1}^{\infty} \frac{n-1}{n!} = e - (e-1) = 1$$

UNIVERSITY OF HONG KONG

```
MARCH 2, 2009
```

COPYRIGHT © 2009 MICHAEL I. SHAMOS

Examples

• Let $g(k, j) = k \cdot j$. How many ordered pairs (k, j) give $k \cdot j = n$?

Answer: $K_{k \cdot j}(n) = d(n)$, the number of divisors of n.

• Therefore, by inspection

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(k \cdot j)^s} = \sum_{n=1}^{\infty} \frac{d(n)}{n^s} = \zeta^2(s)$$

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{a^{k \cdot j}} = \sum_{j=1}^{\infty} \frac{1}{a^j - 1} = \sum_{n=1}^{\infty} \frac{d(n)}{a^n}$$

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(k \cdot j)!} = \sum_{n=1}^{\infty} \frac{d(n)}{n!} \approx 2.4810610197907626979 \dots$$

Enumerating Non-Trivial Powers

- Let $g(k, j) = k^{j}$.
- How many ordered pairs (k, j) give k ^j = n?
 Or, how many ways K(n) can n be expressed as a positive integral power of a positive integer?
- Example: $16 = 16^1 = 8^2 = 2^4$, so K(16) = 3
- If *n* is prime, *K*(*n*) = 1
- If *n* is a square, then, $K(n) \ge 2$; $36 = 36^1 = 6^2$
- But many non-primes have K(n) = 1 also, such as 6, 8,10, 11, 12, 14, 15, 18, 20, 21, 22, 24, 26, 27, 45 = 3² 5; 55125 = 3² 5³ 7²
- How to compute *K*(*n*)?

```
UNIVERSITY OF HONG KONG
```

```
MARCH 2, 2009
```

COPYRIGHT © 2009 MICHAEL I. SHAMOS

Enumerating Non-Trivial Powers

- Let $n = p_1^{e_1} p_2^{e_2} \dots$ be the prime factorization of *n*
- *n* can be a non-trivial power of an integer > 1 iff
 G(*n*) = gcd(*e*₁, *e*₂, . . .) exceeds 1; otherwise *K*(*n*) = 1.
- Suppose b > 1 divides G(n). Then , where each of the e_i/b is a natural number, so n is the bth power of a natural number
- Suppose c > 1 does not divide G(n). Then at least one of the exponents e_i/c is not a natural number and n is not the cth power of a natural number. Therefore,

$$n = \left(p_1^{e_1/b} p_2^{e_2/b} \dots \right)^b$$

 $K_{k^{j}}(n) = d(\gcd(\text{exponents of the prime factorization of n})) *$

A Remarkable Series

• Let
$$S = \sum_{k=2}^{\infty} \frac{1}{k^s} = \zeta(s) - 1$$
. Then
 $S^+ = \sum_{j=1}^{\infty} \sum_{k=2}^{\infty} \frac{1}{(k^j)^s} = \sum_{k=2}^{\infty} \sum_{j=1}^{\infty} k^{-js} = \sum_{k=2}^{\infty} \frac{1}{k^s - 1} = \sum_{n=1}^{\infty} (\zeta(ns) - 1)$
 $S^+ - S = \sum_{n=1}^{\infty} (K_{k^j}(n) - 1)k^{-s} = \sum_{n=1}^{\infty} \Omega_{k^j}(n)k^{-s}$
 $\frac{1}{k^s - 1} = \frac{1}{k^{2s} - k^s} + \frac{1}{k^s}$ yields $S^+ - S = \sum_{n=2}^{\infty} \Omega(n)n^{-s} = \sum_{n=2}^{\infty} \frac{1}{n^{2s} - n^s}$
 $\sum_{n=2}^{\infty} \frac{\Omega(n)}{n} = \sum_{n=2}^{\infty} \frac{d(G(n)) - 1}{n} = \sum_{n=2}^{\infty} \frac{1}{n^2 - n} = 1$ *
 $1 = \frac{1}{4} + \frac{1}{8} + \frac{1}{9} + \frac{2}{16} + \frac{1}{25} + \frac{1}{27} + \frac{1}{32} + \frac{1}{36} + \frac{1}{49} + \frac{3}{64} + \dots$
UNVERSITY OF HONG KONG MARCH 2, 2009 MICHAEL I. SHAMOS

Goldbach's Theorem

• In 1729, Christian Goldbach proved that

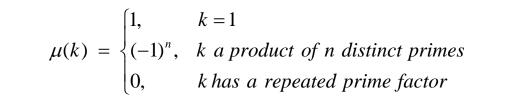
$$\sum_{\substack{\text{q anon-trivial}\\\text{integer power}}} \frac{1}{q-1} = 1 = \frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{15} + \frac{1}{24} + \frac{1}{26} + \dots$$
We just showed that
$$\sum_{k=1}^{\infty} \frac{\Omega(k)}{k} = 1$$

$$1 = \frac{1}{4} + \frac{1}{8} + \frac{1}{9} + \frac{2}{16} + \frac{1}{25} + \frac{1}{27} + \frac{1}{32} + \frac{1}{36} + \frac{1}{49} + \frac{3}{64} + \dots + \frac{3}{256}$$

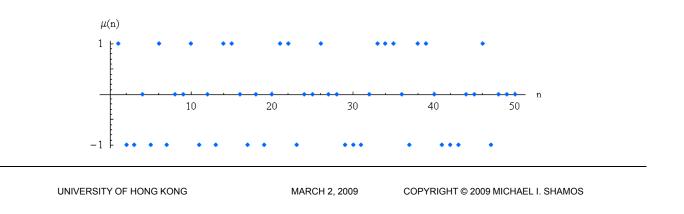
$$4^{2} + 4^{3} + 4^{4} + \frac{1}{8} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \frac{1}{27} + \frac{1}{32} + \frac{1}{36} + \frac{1}{49} + \frac{3}{64} + \dots + \frac{3}{256} + \frac{3}{16^{2}} + \frac{1}{16^{2}} + \frac{1}{16^{2}} + \frac{1}{16^{3}} + \frac$$

Mobius Function Review

The Mobius function, $\mu(k)$, useful in combinatorics, was defined in 1831



$$\mu$$
 (2) = -1; μ (3) = -1; μ (4) = 0; μ (6) = μ (2 · 3) = 1

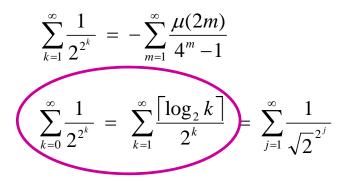


Discovery C

For c > 1 real and p prime,

$$\sum_{k=1}^{\infty} \frac{1}{c^{p^k}} = -\sum_{m=1}^{\infty} \frac{\mu(mp)}{c^{mp}-1}$$

In particular,



Results from Counting Functions

The counting function $K_{max}(n)$ of max(k, j) is 2n-1. So

$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{2^{\max(k,j)}} = \sum_{k=1}^{\infty} \frac{2k-1}{2^k} = 3$$
$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{\max(k,j)!} = \sum_{k=1}^{\infty} \frac{2k-1}{k!} = e+1$$
$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{\max(k,j)^3} = \sum_{k=1}^{\infty} \frac{2k-1}{k^3} = \frac{\pi^2}{3} - \zeta(3)$$

The counting function $K_{\text{lcm}}(n)$ of lcm(k, j) is $d(n^2)$. So

$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{\operatorname{lcm}(k,j)^{s}} = \sum_{k=1}^{\infty} \frac{d(k^{2})}{k^{a}} = \frac{\zeta^{3}(s)}{\zeta(2a)}$$

UNIVERSITY OF HONG KONG

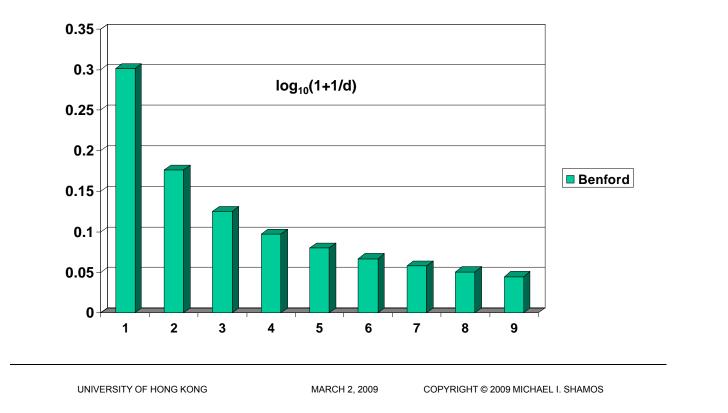
MARCH 2, 2009

COPYRIGHT © 2009 MICHAEL I. SHAMOS

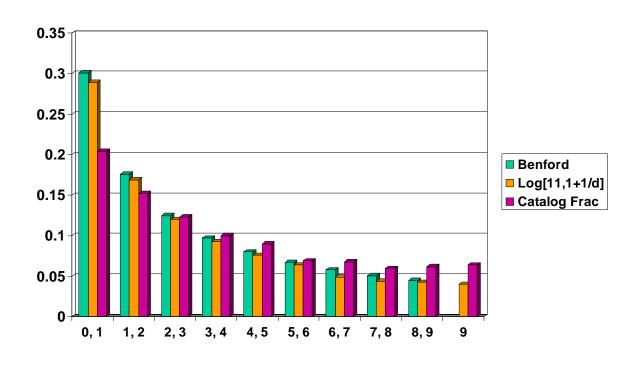
The First-Digit Phenomenon

- Given a random integer, what is the probability that its leading digit is a 1?
- Answer: depends on the distribution from which k is chosen.
- If k is chosen uniformly in [1, n], then let p(d, n) be the probability that the leading digit of k is d
- For $n = 19^+$, 5/9 < p(1,n) < .579; $1/19 \le p(9,n) < 1/18$
- For n = 9⁺, p(1,n) = 1/9; p(9,n) = 1/9
- The "average" is log₁₀(1+1/d)
- {.301, .176, .124, .097, .079, .066, .058, .051, .046}

Relative Digit Frequency (Benford's Law)



First-Digit Phenomenon



UNIVERSITY OF HONG KONG

Major Ideas

- · Theorems can be discovered with the aid of machines
- For mathematicians:
 - How to populate the catalog
 - How to generalize from discoveries
- For computer scientists:
 - Use in symbolic manipulation systems
- For data miners:
 - How to mine the catalog, i.e. how to find new relations
- For statisticians:

- How to use the fact that
$$\int_{0}^{\infty} P(y)f(y) dy = \int_{0}^{\infty} p(x)g(x) dx$$

where *P* is the cumulative distribution of density *p*

UNIVERSITY OF HONG KONG

```
MARCH 2, 2009
```

COPYRIGHT © 2009 MICHAEL I. SHAMOS

A Parting Philosophy

"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it."

> Jacques Hadamard (as quoted by Borel in 1928)

COPYRIGHT © 2009 MICHAEL I. SHAMOS

MARCH 2, 2009

UNIVERSITY OF HONG KONG