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Mathematical Discovery

Where do theorems come from?

We are never taught this. We learn to prove theorems, not
invent them

Some theorems are easy to conjecture and easy to prove
— 4/ 2 isirrational (not a fraction, known to Plato, 360 B.C.)
Theorem easy to conjecture, hard to prove (hundreds of years)
— Four-color theorem (124 years)

— Fundamental theorem of algebra (every non-constant
polynomial has at least one zero). Took 180 years.

— Fermat’s last theorem (357 years)
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Mathematical Discovery

« Difficult to conjecture; easy to prove

— Hadamard three-circles theorem

« Difficult to invent; difficult to prove

— Godel’'s Theorem (there are theorems, i.e., true statements,
which have no proof)

— Riemann hypothesis
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Outline
The problem .
— Closed-form expression for (3) = ZF ~1.2020569031...
The approach k=t

— Build a catalog of real-valued expressions indexed by first 20
digits
— Equivalent expressions will “collide”
— Look up 1.20205690315959428539
The discoveries
— The Partial Sum Theorem
— Overcounting functions

— How many ways can n be expressed as an integer power ki ?
=1
— Expression for kZ; o
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The Problem

Find a closed form expression for odd values of the zeta function:
1
g(s) =
=1

In 1739, Euler found an expression for all even values of s and
showed that:

£(2s) is a rational multiple of 7

R (@=3 k= ot

=1

: il

k=1 k k=1

BUT: no expression is known for even a single odd value, e.g.

1
@) = ZF (this is the only odd value even known to be irrational)
k=1
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Concept of the Catalog

176411 z*°
1531329465 290625
4

1.0000009539 6203387279 41 ~ ¢£(20) =

Q

c(4) =
1
2Catalan -1

120205690 3159594285 3997 ~ £(3) = 2

1.08232323 3711138191 5160 g—o

1.2020224917616113171527 =~

1.64493406 6848226436 4724 ~ {(2) = %

0.91596559 4177219015 05 =~ Catalan = Z D)*
= (2k +1)°
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Other Catalogs

» Sloane’s Encyclopedia of Integer Sequences

— Terrific, but for integer sequences, not reals
* Plouffe’s Inverter

— Huge (215 million entries), but not “natural”
expressions from actual mathematical work

« Simon Fraser Inverse Symbolic Calculator

— 50 million constants
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Discovery A

ark) o, 1

where 7 (K) is the number of primes < k

Is this a coincidence?
Why the factor of 27

Is there a general principle at work?

— In fact,

[e o]

Zﬂ'(k): a_ 3 1

k1 a a-1 p prime a
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Observation

7z(K) is a partial sum function, i.e., 7z(K) = Zl

p prime
p<k

More generally, 7 (K) is the partial sum function of the
indicator function of the property “primeness”:

1, j prime
0, otherwise

”(k) = Zk IPfime (J)’ Where Iprime (J) = {

= m(k 1 1
So Z% =2 Z o T Z = can be rewritten as:

>0 1K) = T90) = X 1um K9
|—> where f and g are “related” —I
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The Partial Sum Theorem (New)

Given a sequence S of complex numbers s(k), let

n

t(n) = Zs(k) be the sequence of partial sums of S.
k=1
Given a function f, if certain convergence criteria are satisfied,

then PARTIAL
r TAILS OF f (k) —l
Dtk Fk) = D s(i)adi)
k=1 L j:lJ
SUMS OF 5(i)
where

9(i) = Y F(K

(the partial tails of f) is a transform of findependent of s & ¢
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Partial Sum Functions

Many sequences are partial sum functions:

51
H(n) = ZE the harmonic function
k=1

HOM) =

F generalized harmonic function
k=1

PR St
a2
6 _ n*+4n+6 _ &k?
2n =) 2k
logI'(n) = ) logk
k=1

Actually, every sequence is the partial sum function of some other
sequence
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Some Partial Sum Transforms

) = gi=Yfk  fl = i)

: L 1 r(i.y
a* (a-Dat Tl ell-——~

: (a-Da’ X r(j)

1 1 k2 +k-1 i
vk j (k+2) G+D)!

! 1 sink sin(l—j) + asin j
k*—k 2j(i-1) X AL+ a7 _2ac0s])
D" (-1’ 1 (1 - j

1Ak R 10
k? -1 2i(j-1) Ka" Bl
-1 1 .
T (S cys i 21 () NPT
Pl DSl | S R+ Y
g(kn) n—1(;( 1)'S,(n,i) ] (zkk] (%) (L, j+1, j+%,Ya)
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Partial Sum Theorem (Proof)

- Consider the upper triangular matrix m; ; = s(i)f(j), 1<j:

OO sOFR) GOXE sOf@ sOfE) .

S

TAILS OF f
0 s(Z)@ 5(2) s(2) s)f () => T™LSE
0 0 f 3 s@)f@) s@FE .|

R
0 0 HO s(4)f(4) s(4)f(5) Su?nv"s
0 0 0 0 s(5) f (5) b
0 0 R 0 0 > s(ig(j)
HEADS OF s
0 0 = () 0 0
Column sums are Zt(k) f (k)

The Convergence Criteria

o0

S0 = 3 sgk) i

k=1

1. All sums g(k) converge

2. is(k)g(k) converges; and
k=1

3. limt(n)g(n)=0

Proof: By Markoff’s theorem on convergence of double series
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Further Applications

+ The number of perfect nth powers < k is LQ/EJ

» The number of positive integers powers of a < k is | log, k |

» Therefore, by inspection,

Sloak s 1511

k=2 n a positive n j=1 a’ a-1
power of a

- |5k :

= = £(m)
;kz"'k na%l;fectn ;J

m™ power

= 27(K) 1 © kr(k) 1

= = — %
kZ;k?’—k ppZ p(p-1) * kz-;(k+l)! ppZ p!
Z(2k 7)oy L
k=2 k+1 p prime p2 *
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The Partial Integral Theorem *

« Given a function s(x), let t(y) be the “left integral” of s :

t(y) = js(x) dx

0

Given a function f(y), if certain convergence criteria are satisfied,

then ) |—> RIGH;lFNf?;RAL_l
[t fdy = [s)g(x) dx

0 [ 0
LEFT INTEGRAL

OF s(x)
where

900 = [ f(y)dx

(the right integral of f) is a transform of findependent of s & ¢
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Discovery B

N 1 (1 1
I ERICRICED ) o

k=1

0

. — must exceed — =<¢@3) -1,
JZ:;‘Z‘(H jp musteceed 25 =<6

but by how much?

» Is there a general principle at work?

— In fact,
- 1

o (k+j)°

.Mg

Il
N

= ¢(s=1) - 4(s)

]
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Overcounting Functions

Lot S = > (k) and S* = 373 F(gk, )

j=1 k=1
where g(K, J) ranges over the natural numbers
1. Every term of S* occurs at least once in S.

2. Ingeneral, S* overcounts S, since some terms of S occur many
times in S*

3. If K (k) is the number of times f(k) is included in S*, then

O RICINEDHRGHE

j=1 k=1

where K (k) depends only on g and noton f.
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Examples

 Letg(k,j)=k+j. How many ordered pairs (k, j) of natural

numbers give k +j =n? Answer: K,,;(n) = n-1

» Therefore, by inspection,

I DU e BTG EC
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Examples
 Letg(k,j)=k<+j. How many ordered pairs (k, j) give k*j=n?
Answer: Ki.;(n) = d(n), the number of divisors of n .

» Therefore, by inspection

>y to = 3

j=1 k=1 n=1
ce 1 & 1 &d()
Jzzllkz:;a"‘ ,Z:;‘a"—l _nzzll a"

ii 1 i— ~ 2.4810610197907626979 ...
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Enumerating Non-Trivial Powers
Let g(k, j) = k.

How many ordered pairs (k, j) give k! = n?

Or, how many ways K(n) can n be expressed as a
positive integral power of a positive integer?

Example: 16 = 161 = 82=2% so K(16) =3
If nis prime, K(n) =1
If nis a square, then, K(n)=22; 36 = 36! = 62

But many non-primes have K(n) = 1 also, such as
6, 8,10, 11, 12, 14, 15, 18, 20, 21, 22, 24, 26, 27,
45 =32.5; 55125=3%2.5%.72

How to compute K(n)?
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Enumerating Non-Trivial Powers

Let n = p,"p,”... bethe prime factorization of n
n can be a non-trivial power of an integer > 1 iff

G(n) = gcd(ey, e,, . . . ) exceeds 1; otherwise K(n) = 1.
Suppose b > 1 divides G(n). Then

where each of the g;/b is a natural number, so n is the bth power
of a natural number

Suppose ¢ > 1 does not divide G(n). Then at least one of the
exponents e;/c is not a natural number and n is not the ct" power
of a natural number. Therefore,

_ (plellb pzezlb )b

K.;(n) = d(gcd(exponentsof the primefactorization of n)) =

UNIVERSITY OF HONG KONG MARCH 2, 2009 COPYRIGHT © 2009 MICHAEL I. SHAMOS




A Remarkable Series

. Let S = iki — £(s)-1. Then

(Old)
N o0 [ee) 1 0 o0 7.5 [*¢] l [oe)
) e D I N S InE e N (DY
j=1 k=2 (k ) k=2 j=1 k=2k -1 n=1
the “overcounting” function
+ S - S / -S
s'—s = S (K, (m-1)k> = Y (nk
n=1 n=1
1 1 N = s = 1
1 1 E KTy Yelds  §T-S = nZ:;Q(n)n = ;nzs—ns
= Q(n) = d(G(n)-1 =1 *
= =1
~ n nz:;‘ n nzz;‘nz—n
-+, 2 1 1, .1, 1.3
4 8 9 16 25 27 32 36 49 64
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Goldbach’s Theorem

* In 1729, Christian Goldbach proved that

1 1 1 1 1 1 1
Y —=1= 3Tt e T e T T

g anon-—trivial q -1 3 7 15 24 26
integer power
«  We just showed that Z¥ =
k=1
1 1 2 1 1 1 1 1 3 3
1 =—+ — At —+ —+ —+ — + — H— —
4 9

% 16 25 27 32 36 49764 " 256
\‘42 \ > 43/;’ > 44?'
> 83

82 ~

162

v

163

UNIVERSITY OF HONG KONG MARCH 2, 2009 COPYRIGHT © 2009 MICHAEL I. SHAMOS




Mobius Function Review

The Mobius function, u (k), useful in combinatorics, was defined in 1831

1, k=1
u(k) = <(-1", k aproduct of n distinct primes
0, k has a repeated prime factor

H(2)=-1u3)=-1,u(4)=0p(6)=p(2-3)=1

()
1 (i * * * ¥ L J * LR B J L ] *
i o — 4 e . . N —— e p
10 20 30 40 50
—1 L X J - L > L > L > LN N * LN N L
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Discovery C

For ¢ > 1 real and p prime,

- 1 Z,U(mp)

k
k1 CP m=1 C

In particular,

UNIVERSITY OF HONG KONG MARCH 2, 2009 COPYRIGHT © 2009 MICHAEL I. SHAMOS




Results from Counting Functions

The counting function K

max

e 1 2k -1

;;W=Z o =3

(n) of max(k, j) is 2n-1. So

k=1 j=1 M )
o o® 1 © 2k—l 2

= = — 3
22y & K -

The counting function K., (n) of lcm(k, j) is d(n?). So
d(k ) _ <)
ZZlcm(k ) Z  £(2a)

k=1 j=1 k=1
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The First-Digit Phenomenon

Given a random integer, what is the probability that its
leading digitisa 17?

Answer: depends on the distribution from which k is
chosen.

If k is chosen uniformly in [1, n], then let p(d, n) be the
probability that the leading digit of kis d

Forn=19* 5/9 <p(1,n) <.579; 1/19 <p(9,n) < 1/18
For n = 9%, p(1,n) = 1/9; p(9,n) = 1/9

The “average” is log,y(1+1/d)

{.301, .176, .124, .097, .079, .066, .058, .051, .046}
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Relative Digit Frequency (Benford’'s Law)

0.35+

0.3+

0.25-

0.2+

0.15+

0.1+

0.05+

log,o(1+1/d)

E Benford
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First-Digit Phenomenon
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Major ldeas

Theorems can be discovered with the aid of machines
For mathematicians:

— How to populate the catalog

— How to generalize from discoveries

For computer scientists:

— Use in symbolic manipulation systems

For data miners:

— How to mine the catalog, i.e. how to find new relations
For statisticians: } 3

— How to use the fact that !P(Y)f(Y)dy = [ p()g(x) dx

0

where P is the cumulative distribution of density p
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A Parting Philosophy

“The object of mathematical rigor is to
sanction and legitimize the conquests of
intuition, and there was never any other
object for it.”

Jacques Hadamard
(as quoted by Borel in 1928)
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