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Introduction

Retail Pricing using Transaction Data



4

Retail Pricing and Promotion
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Collecting Transaction Data

Why do companies collect this information?
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Category Management
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The Next Generation of 
Transaction Systems

• RFID has the potential to 
“revolutionize” the marketplace

• Examples:
– Electronic pricing environments 

(e.g., e-commerce sites and 
electronic shelf labels) enable 
price experimentation in real-time

• What happens to price, 
product, promotion, and 
placement?



Quantitative Approaches
to Pricing
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Goal

• How can we better exploit the installed baseinstalled base of data:
– Store level scanner data

• To make these types of decisions at low costlow cost:
– Everyday pricing
– Zone/store pricing decisions
– Planning the promotional calendar
– Trade promotions
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Statistical Demand Models

• Relate movement of each product to its price changes
• Consider prices of other products within the category
• Estimate the effects of feature ads, in-store displays, and shelf-

tags
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Evaluating This Approach

Advantages
• Can “learn” about consumers 

based on their past behavior
• Leverages data warehouse
• Summarizes complicated 

behavior
• Easy to use

Disadvantages
• Complicated to build
• Forecasts can be wrong
• Can conflict with our 

intuition
• How do we “prove” the 

models are correct
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Profitability of TropPrem64 at Pittsburgh #637 (Cost=$2.40)
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Decision Support Systems for 
Retail Pricing

Massive Datasets and
Massive Decision Problems
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Goal

• How can we better exploit the installed baseinstalled base of data:
– Point-of-Sale Data (Scanner/Loyalty programs)

• To make these types of decisions at low costlow cost:
– Everyday pricing
– Zone/store pricing decisions
– Planning the promotional calendar
– Trade promotions
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Decision Support Systems must be...

• Simple
• Robust
• Easy to control
• Adaptive
• As complete as possible
• Easy to communicate with

See Little (1970, 1979)
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Pricing Decision Support

• Dynamically forecast movement, revenue, profit
• Manipulate price, display, advertising, wholesale cost
• Produce forecasts for store, chain, zone level
• Provide multi-week planning horizon
• Measure both acquisition and wholesale costs
• Manage promotional calendars
• Optimizer to suggest best pricing strategy (either by groups or all)
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Pricing DSS

• Detect price response using 
historical transaction data 

• Forecast movement, 
revenue, profit in real-time

• Produce weekly forecasts at 
the chain, zone, and store 
level

• Manipulate price, feature, 
display, and wholesale cost 
in an interactive 
environment

• Change prices for groups of 
products

• Provide a multi-week 
planning horizon in order to 
manage promotional 
calendars

• Work with incomplete 
information

• Coordination across 
categories and stores

• Integrate information from 
many sources

• Scalability
• Recommend price strategies
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Problems

• Data
– Historical data from the warehouse
– Current inventory
– Anticipated prices from promotions/competitors
– Continually changing inventories/product assortments

• Modeling
– How to model 200-10,000 SKUs per category?
– What about 100-2,000 stores in the chain?
– Over 300 categories per store?
– Seasonal patterns

• Inference
– Prevent model from making bad predictions
– Need to consider promotional calendar
– Making Optimization Decisions
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Illustrating our Information Flow 
in our Pricing DSS

Data
Warehouse

Data
Preparation Modeling

Price 
Selection/

Optimization

Price 
Staging

Retail 
Pricing

Stores
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Companies offering Pricing 
Optimizers

1998zilliant.comAustin, TXZilliant

1986, 1996*retek.comMinneapolis, MNRetek

1984, 2001*profitlogic.comCambridge, MAProfitLogic

2000metreo.comPalo Alto, CAMetreo

maxager.comSan Rafael, CAMaxager Technology

2003*marketmax.comWakefield, MAMarketmax

2001*Manugistics.comRockville, MDManugistics

1993kssg.comFlorham Park, NJKnowledge Support Systems

1993, 2000*khimetrics.comScottsdale, AZKhiMetrics

1994nonstop.comSan Francisco, CAEvant

1988i2.comDallas, TXI2

1999Demandtec.comSan Carlos, CADemandTec

1999predictivetechnologies.comArlington, VAApplied Predictive Technologies

1923, 1995*Acnielsen.comNew York, NYACNielsen

FoundedWebsiteLocationCompany
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Our Modeling Contributions

• Hierarchical Bayesian Models
– Estimation of product X store level models
– Use of Monte-Carlo Markov Chain methods for estimation and 

inference
• Real-time Inference

– Use of simulated estimates incorporates uncertainty over 
parameter estimates and prior information.  Avoids approximations 
commonly used in practice.

• Informative Priors
– Shrinkage estimators allow borrowing of information across stores 

to improve estimates
– Allow managers and analysts to incorporate prior information about 

parameter values and optimal prices



The Determinants of Price 
Elasticity
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Why do price elasticities
vary?

• Do all stores have the same price response profiles?
• What explains these differences?
• How do you customize a pricing strategy that appeals 

to a store’s trading area?

Implementing a MicroImplementing a Micro--Marketing StrategyMarketing Strategy
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Are there really 
differences across 
stores and brands?

Legend:

Very Price Sensitive

Moderate Price Sensitive

Not Price Sensitive
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What explains these 
differences?
Demographics +
Unique Store Profiles

Legend:

Few College Educated Adults

Moderate Education Levels

Highly Educated Areas
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Summary of Results

+ Elderly Can devote more time to price search and shopping

- Education Higher opportunity costs, less attention to shopping

+ Ethnic Proxy for other causal factors

? Income Dependent upon category

+ FamilySize Larger share of disposable income on groceries, 
increased returns to search

+ Working Women Tighter constraints on household budget

- House Value Fewer income constraints

- Competitor Dist. Isolated stores less price sensitive

+ Relative Volume Consumers self-select for location and 
convenience or price and assortment



Micro-Marketing Pricing

Developing Models for every Store x Item
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Store-Level Strategies

• The previous results show that there are differences 
in how consumers respond to price changes across 
stores

• How do you cater to neighborhood store 
preferences?
– Different product assortments
– Store-level everyday pricing
– Unique in-store promotions
– Customized store features 
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Profitability of TropPrem64 (Cost=$2.40)
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What is the problem with the 
usual regression approach?
Difficult to acquire reliable estimates for individual 
products at store-level 

Model Dimension
Stores x Brands x Regressors
= 100 x 10 x 14 = 14,000 parameters

Data Dimension =
Stores x Brands x Weeks
= 100 x 10 x 156 weeks = 156,000 data points

Frustrated use of this data in industry!
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Two extremes:

Pooling
Ignore all store 

differences

Individual Store 
Models

Difficult to estimate

Shrinkage
Exploit commonalties across 
stores to improve individual 

store estimates

Our Solution:

What can be done?
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Shrinkage estimates

• We are exploiting commonalities across the stores to 
improve the estimates

• Our approach incorporates several new theoretical 
developments:
– Shrinkage estimation using Monte Carlo Markov Chain 

methods
– General approach to estimation
– Incorporation of informative priors to specify similarities 

across stores, model structure, and information about price 
solution
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Visualizing the Priors Effect:
Shrinkage toward the Prior
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Variation in Tropicana Own Price Elasticity

Store
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Setting Store-Level National Brand/
Store Brand Price Gaps
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Expected Profits
from Micro-Marketing Pricing Strategies

Relative to a Uniform Chain
Pricing Strategy

# Description of Pricing Strategy
Expected

Profits
Expected
Increase

% Change in
Expected

Profits

Prob[
Expected

Increase >0]

Uniform Prices across all Stores $3,330,900 
(11,900)

1 Optimal Uniform Strategy $3,344,100 +$13,200 +.4% 1.00 
(11,600) (1,700) (.1)

2 Optimal Micro-Marketing Strategy $3,459,000 +$128,100 +3.9% 1.00 
(19,400) (18,800) (.6)

3 Optimal Micro-Marketing Strategy $3,481,600 +150,700 +4.5% 1.00 
 with constraints at the Chain-level (20,900) (20,200) (.6)

Note: The standard deviation of the posterior are given in parentheses below the posterior means.
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Findings

• Every store is different and has its own price response profile
– We can identify the price profile of a store using historical data
– The most important determinants are store demographics (to a 

lesser extent competitive characteristics)

• Micro-marketing presents a rich environment for store-level 
pricing
– Do not simply increase all prices up or down
– Manage the price gaps between the brands to encourage 

substitution towards more profitable baskets or products

• Can recommend better or optimal pricing strategies



Experimental Results
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An Experimental Approach

• A simple and reliable method (albeit costly) to find a 
better pricing strategy is through experimentation:
– Divide 86 stores into 3 treatments: Control (leave prices 

unchanged), EDLP (decrease prices by 7%), and Hi-Lo 
(increase prices by 7%)

– Measure change in profits and movement and compare them 
to control group
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Experimental Results
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EDLP vs Hi-Lo

• Clearly Hi-lo is much more profitable
– Why was Dominick’s hesitant to implement these 

results?

• What is driving these results is price sensitivity
– If products were more price sensitive than EDLP would work 

(price decreases would dramatically increase sales)
– What determines price sensitivity?
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Elasticity Based Zone 
Assignments

Low
Price Zone

Medium
Price Zone

High
Price Zone

High Price Sensitivity 2 14 4

Medium Price Sensitivity 6 25 11

Low Price Sensitivity 1 10 10



Conclusions
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Findings

• The Retail Market is moving towards integrated 
supply-channel and demand-based pricing solutions

• Many challenging modeling problems have been 
addressed, however there are still much to be done

• Strong potential for increased profitability and 
efficiency that can benefit both the retailer and the 
consumer


