Creating Retail Decision Support Systems using Consumer Transaction Data

Alan Montgomery
Associate Professor Carnegie Mellon University
Tepper School of Business

e-mail: alanmontgomery@cmu.edu
web: http://www.andrew.cmu.edu/user/alm3
University of Hong Kong, 19 July 2005
© 2005 by Alan Montgomery, All rights reserved.

Outline

- Introduction
- Quantitative Approaches to Pricing
- Pricing Decision Support Systems
- The Determinants of Price Elasticity
- Micro-Marketing Pricing Strategies
- Experimental Results
- Conclusions

Introduction

Retail Pricing using Transaction Data

Retail Pricing and Promotion

Collecting Transaction Data

Why do companies collect this information?

Category Management

The Next Generation of Transaction Systems

- RFID has the potential to "revolutionize" the marketplace
- Examples:
- Electronic pricing environments (e.g., e-commerce sites and electronic shelf labels) enable price experimentation in real-time
- What happens to price, product, promotion, and placement?

Quantitative Approaches to Pricing

Goal

- How can we better exploit the installed base of data:
- Store level scanner data
- To make these types of decisions at low cost.
- Everyday pricing
- Zone/store pricing decisions
- Planning the promotional calendar
- Trade promotions

Weekly Movement and Price of TropPrem64

Movement vs Price of TropPrem64

Movement vs Price of TropPrem64

Movement vs Price of TropPrem64

Chicago \#6

Chicago \#58

Price of TropPrem64

Price of Trop64

Price of TropPrem96

Price of MMaid64

Statistical Demand Models

- Relate movement of each product to its price changes
- Consider prices of other products within the category
- Estimate the effects of feature ads, in-store displays, and shelftags

Evaluating This Approach

Advantages

- Can "learn" about consumers based on their past behavior
- Leverages data warehouse
- Summarizes complicated behavior
- Easy to use

Disadvantages

- Complicated to build
- Forecasts can be wrong
- Can conflict with our intuition
- How do we "prove" the models are correct

Profitability of TropPrem64 at Pittsburgh \#637 (Cost=\$2.40)

Decision Support Systems for Retail Pricing

Massive Datasets and
Massive Decision Problems

Goal

- How can we better exploit the installed base of data:
- Point-of-Sale Data (Scanner/Loyalty programs)
- To make these types of decisions at low cost.
- Everyday pricing
- Zone/store pricing decisions
- Planning the promotional calendar
- Trade promotions

Decision Support Systems must be...

- Simple
- Robust
- Easy to control
- Adaptive
- As complete as possible
- Easy to communicate with

See Little (1970, 1979)

Pricing Decision Support

Market Simulation Model						
Decision Variables						
Brand Description	Carton Price	Feature Ad	In-Store Display	Expected Movement	Wholesale Cost	Profits
1 TropPrem64	\$2.89	No	Yes	12248	\$1.75	\$217.27
2 TropPrem96	\$3.79	Yes	No	21139	\$3.32	\$103.01
3 TropReg64	\$2.29	No	No	3566	\$1.49	\$44.64
4 MinMaid64	\$2.24	No	No	8459	\$1.67	\$75.52
5 Store64	\$1.79	No	No	9106	\$1.20	\$83.96
				Cat	ory Profits:	\$524.41

- Dynamically forecast movement, revenue, profit
- Manipulate price, display, advertising, wholesale cost
- Produce forecasts for store, chain, zone level
- Provide multi-week planning horizon
- Measure both acquisition and wholesale costs
- Manage promotional calendars
- Optimizer to suggest best pricing strategy (either by groups or all)

Pricing DSS

- Detect price response using historical transaction data
- Forecast movement, revenue, profit in real-time
- Produce weekly forecasts at the chain, zone, and store level
- Manipulate price, feature, display, and wholesale cost in an interactive environment
- Change prices for groups of products
- Provide a multi-week planning horizon in order to manage promotional calendars
- Work with incomplete information
- Coordination across categories and stores
- Integrate information from many sources
- Scalability
- Recommend price strategies

Problems

- Data
- Historical data from the warehouse
- Current inventory
- Anticipated prices from promotions/competitors
- Continually changing inventories/product assortments
- Modeling
- How to model 200-10,000 SKUs per category?
- What about 100-2,000 stores in the chain?
- Over 300 categories per store?
- Seasonal patterns
- Inference
- Prevent model from making bad predictions
- Need to consider promotional calendar
- Making Optimization Decisions

Companies offering Pricing Optimizers

Company	Location	Website	Founded
ACNielsen	New York, NY	Acnielsen.com	$1923,1^{*}$
Applied Predictive Technologies	Arlington, VA	predictivetechnologies.com	1999
DemandTec	San Carlos, CA	Demandtec.com	1999
I2	Dallas, TX	i2.com	1988
Evant	San Francisco, CA	nonstop.com	1994
KhiMetrics	Scottsdale, AZ	khimetrics.com	$1993,2000^{*}$
Knowledge Support Systems	Florham Park, NJ	kssg.com	1993
Manugistics	Rockville, MD	Manugistics.com	2001^{\star}
Marketmax	Wakefield, MA	marketmax.com	2003^{\star}
Maxager Technology	San Rafael, CA	maxager.com	
Metreo	Palo Alto, CA	metreo.com	2000
ProfitLogic	Cambridge, MA	profitlogic.com	$1984,2001^{\star}$
Retek	Minneapolis, MN	retek.com	$1986,1996^{\star}$
Zilliant	Austin, TX	zilliant.com	1998

Our Modeling Contributions

- Hierarchical Bayesian Models
- Estimation of product X store level models
- Use of Monte-Carlo Markov Chain methods for estimation and inference
- Real-time Inference
- Use of simulated estimates incorporates uncertainty over parameter estimates and prior information. Avoids approximations commonly used in practice.
- Informative Priors
- Shrinkage estimators allow borrowing of information across stores to improve estimates
- Allow managers and analysts to incorporate prior information about parameter values and optimal prices

The Determinants of Price Elasticity

Why do price elasticities vary?

- Do all stores have the same price response profiles?
- What explains these differences?
- How do you customize a pricing strategy that appeals to a store's trading area?

I mplementing a Micro-Marketing Strategy

Are there really differences across stores and brands?

Legend:

\square Very Price Sensitive
\square Moderate Price Sensitive
Not Price Sensitive

What explains these differences?
Demographics + Unique Store Profiles

Legend:

Few College Educated Adults
Moderate Education Levels
Highly Educated Areas

Summary of Results

+ Elderly Can devote more time to price search and shopping
- Education
+ Ethnic
? Income
+ FamilySize Higher opportunity costs, less attention to shopping
Proxy for other causal factors
Dependent upon category
Larger share of disposable income on groceries, increased returns to search
+ Working Women Tighter constraints on household budget
- House Value Fewer income constraints
- Competitor Dist. Isolated stores less price sensitive
+ Relative Volume Consumers self-select for location and convenience or price and assortment

Micro-Marketing Pricing

Developing Models for every Store x Item

Store-Level Strategies

- The previous results show that there are differences in how consumers respond to price changes across stores
- How do you cater to neighborhood store preferences?
- Different product assortments
- Store-level everyday pricing
- Unique in-store promotions
- Customized store features

Movement vs Price of TropPrem64

Chicago \#6

Chicago \#58

Profitability of TropPrem64 (Cost=\$2.40)

What is the problem with the usual regression approach?

Difficult to acquire reliable estimates for individual products at store-level

Model Dimension
Stores \times Brands \times Regressors
$=100 \times 10 \times 14=14,000$ parameters

Data Dimension =

Stores \times Brands \times Weeks
$=100 \times 10 \times 156$ weeks $=156,000$ data points
Frustrated use of this data in industry!

What can be done?

Two extremes:

```
    Pooling
Ignore all store differences
```


Individual Store Models
 Difficult to estimate

Our Solution:

Shrinkage
Exploit commonalties across stores to improve individual store estimates

Hierarchical Bayesian Setup

Shrinkage estimates

- We are exploiting commonalities across the stores to improve the estimates
- Our approach incorporates several new theoretical developments:
- Shrinkage estimation using Monte Carlo Markov Chain methods
- General approach to estimation
- Incorporation of informative priors to specify similarities across stores, model structure, and information about price solution

Visualizing the Priors Effect: Shrinkage tow ard the Prior

Variation in Tropicana Own Price Elasticity

Setting Store-Level National Brand/ Store Brand Price Gaps

Expected Profits for Store \# 6

Expected Profits for Store \# 58

Effects of a reduction in the price multiplier

Expected Profits from Micro-Marketing Pricing Strategies

Note: The standard deviation of the posterior are given in parentheses below the posterior means.

Effects of Price Changes from an Optimal Pricing Strategy

Findings

- Every store is different and has its own price response profile
- We can identify the price profile of a store using historical data
- The most important determinants are store demographics (to a lesser extent competitive characteristics)
- Micro-marketing presents a rich environment for store-level pricing
- Do not simply increase all prices up or down
- Manage the price gaps between the brands to encourage substitution towards more profitable baskets or products
- Can recommend better or optimal pricing strategies

Experimental Results

An Experimental Approach

- A simple and reliable method (albeit costly) to find a better pricing strategy is through experimentation:
- Divide 86 stores into 3 treatments: Control (leave prices unchanged), EDLP (decrease prices by 7\%), and Hi-Lo (increase prices by 7\%)
- Measure change in profits and movement and compare them to control group

Experimental Results

Pricing Experiment Results

EDLP vs Hi-Lo

- Clearly Hi-lo is much more profitable
- Why was Dominick's hesitant to implement these results?
- What is driving these results is price sensitivity
- If products were more price sensitive than EDLP would work (price decreases would dramatically increase sales)
- What determines price sensitivity?

Elasticity Based Zone Assignments

	Low Price Zone	Medium Price Zone	High Price Zone
High Price Sensitivity	2	14	4
Medium Price Sensitivity	6	25	11
Low Price Sensitivity	1	10	10

Conclusions

Findings

- The Retail Market is moving towards integrated supply-channel and demand-based pricing solutions
- Many challenging modeling problems have been addressed, however there are still much to be done
- Strong potential for increased profitability and efficiency that can benefit both the retailer and the consumer

