Creating Retail Decision Support Systems using Consumer Transaction Data

Alan Montgomery Associate Professor Carnegie Mellon University Tepper School of Business

e-mail: alanmontgomery@cmu.edu web: http://www.andrew.cmu.edu/user/alm3

University of Hong Kong, 19 July 2005

© 2005 by Alan Montgomery, All rights reserved.

Outline

- Introduction
- Quantitative Approaches to Pricing
- Pricing Decision Support Systems
- The Determinants of Price Elasticity
- Micro-Marketing Pricing Strategies
- Experimental Results
- Conclusions

Introduction

Retail Pricing using Transaction Data

Retail Pricing and Promotion

Collecting Transaction Data

STORE N PHONE N	Publix AMAGER: MIKE LYNCH UMBER (904) 461-0231		
CRIS	TON WAS YOUR CASHIER TO	ODAY.	
1 8 3/	7,00		
1000	SPRITE 12 PK 12 OZ	2.34 B	
	AD SPEC SAVINGS 1.0	65	
	WRIGLEY WINTERFRSH	.25 B	
	HOT DOG ROLLS	1.79 F	
	HERSHY CHOC SYRUP	1,19 F	
	BREYERS ROCKY ROAD	5.07 F	
28.79	MANGOS	1.58 F	
	CEDAR SPRAY 2 0Z	2.99 T	
	PUBLIX PAPER TOWEL	.93 T	
	KLEENEX COTTN BATH	2.99 T	
	AD SPEC SAVINGS .	68	
	LOUIS RICH FRAMKS	2.09 F	
	LAUNDRY BASKET	2.99 T	
****	TAX .75 BAL	24.96	
VF	VISA PURCHASE	24.96	
ADVERTISED SPECIAL SAVINGS 2,33			
YOUR TO	TAL SAVINGS AT PUBLIX	2.33	
6/29/0	2 4:51 PH 0336 01 05 IT'S OUR PLEASURE	20 238	

Why do companies collect this information?

Category Management

6

The Next Generation of Transaction Systems

- RFID has the potential to "revolutionize" the marketplace
- Examples:
 - Electronic pricing environments (e.g., e-commerce sites and electronic shelf labels) enable price experimentation in real-time
- What happens to price, product, promotion, and placement?

Quantitative Approaches to Pricing

Goal

- How can we better exploit the *installed base* of data:
 - Store level scanner data
- To make these types of decisions at *low cost*:
 - Everyday pricing
 - Zone/store pricing decisions
 - Planning the promotional calendar
 - Trade promotions

Weekly Movement and Price of TropPrem64

11

Price

Statistical Demand Models

- Relate movement of each product to its price changes
- Consider prices of other products within the category
- Estimate the effects of feature ads, in-store displays, and shelftags

Evaluating This Approach

<u>Advantages</u>

- Can "learn" about consumers based on their past behavior
- Leverages data warehouse
- Summarizes complicated behavior
- Easy to use

Disadvantages

- Complicated to build
- Forecasts can be wrong
- Can conflict with our intuition
- How do we "prove" the models are correct

Profitability of TropPrem64 at Pittsburgh #637 (Cost=\$2.40)

Decision Support Systems for Retail Pricing

Massive Datasets and Massive Decision Problems

Goal

- How can we better exploit the *installed base* of data:
 - Point-of-Sale Data (Scanner/Loyalty programs)
- To make these types of decisions at *low cost*:
 - Everyday pricing
 - Zone/store pricing decisions
 - Planning the promotional calendar
 - Trade promotions

Decision Support Systems must be...

- Simple
- Robust
- Easy to control
- Adaptive
- As complete as possible
- Easy to communicate with

See Little (1970, 1979)

Pricing Decision Support

Market Simulati	on Model					
Decision Variables						
Brand Description	Carton Price	Feature Ad	In-Store Display	Expected Movement	Wholesale Cost	Profits
1 TropPrem64 2 TropPrem96 3 TropReg64 4 MinMaid64 5 Store64	\$2.89 \$3.79 \$2.29 \$2.24 \$1.79	No Yes No No No	Yes No No No No	12248 21139 3566 8459 9106	\$1.75 \$3.32 \$1.49 \$1.67 \$1.20	\$217.27 \$103.01 \$44.64 \$75.52 \$83.96
,				Cate	gory Profits:	\$524.41

- Dynamically forecast movement, revenue, profit
- Manipulate price, display, advertising, wholesale cost
- Produce forecasts for store, chain, zone level
- Provide multi-week planning horizon
- Measure both acquisition and wholesale costs
- Manage promotional calendars
- Optimizer to suggest best pricing strategy (either by groups or all)

Pricing DSS

- Detect price response using historical transaction data
- Forecast movement, revenue, profit in real-time
- Produce weekly forecasts at the chain, zone, and store level
- Manipulate price, feature, display, and wholesale cost in an interactive environment
- Change prices for groups of products

- Provide a multi-week planning horizon in order to manage promotional calendars
- Work with incomplete information
- Coordination across categories and stores
- Integrate information from many sources
- Scalability
- Recommend price strategies

Problems

• Data

- Historical data from the warehouse
- Current inventory
- Anticipated prices from promotions/competitors
- Continually changing inventories/product assortments
- Modeling
 - How to model 200-10,000 SKUs per category?
 - What about 100-2,000 stores in the chain?
 - Over 300 categories per store?
 - Seasonal patterns
- Inference
 - Prevent model from making bad predictions
 - Need to consider promotional calendar
 - Making Optimization Decisions

Companies offering Pricing Optimizers

Company	Location	Website	Founded
ACNielsen	New York, NY	Acnielsen.com	1923, 1995*
Applied Predictive Technologies	Arlington, VA	predictivetechnologies.com	1999
DemandTec	San Carlos, CA	Demandtec.com	1999
12	Dallas, TX	i2.com	1988
Evant	San Francisco, CA	nonstop.com	1994
KhiMetrics	Scottsdale, AZ	khimetrics.com	1993, 2000*
Knowledge Support Systems	Florham Park, NJ	kssg.com	1993
Manugistics	Rockville, MD	Manugistics.com	2001*
Marketmax	Wakefield, MA	marketmax.com	2003*
Maxager Technology	San Rafael, CA	maxager.com	
Metreo	Palo Alto, CA	metreo.com	2000
ProfitLogic	Cambridge, MA	profitlogic.com	1984, 2001*
Retek	Minneapolis, MN	retek.com	1986, 1996*
Zilliant	Austin, TX	zilliant.com	1998

Our Modeling Contributions

- Hierarchical Bayesian Models
 - Estimation of product X store level models
 - Use of Monte-Carlo Markov Chain methods for estimation and inference
- Real-time Inference
 - Use of simulated estimates incorporates uncertainty over parameter estimates and prior information. Avoids approximations commonly used in practice.
- Informative Priors
 - Shrinkage estimators allow borrowing of information across stores to improve estimates
 - Allow managers and analysts to incorporate prior information about parameter values and optimal prices

The Determinants of Price Elasticity

Why do price elasticities vary?

- Do all stores have the same price response profiles?
- What explains these differences?
- How do you customize a pricing strategy that appeals to a store's trading area?

Implementing a Micro-Marketing Strategy

Are there really differences across stores and brands?

Legend:

Category Price Elasticity

What explains these differences? Demographics + Unique Store Profiles

Legend:

Few College Educated Adults
Moderate Education Levels
Highly Educated Areas

% Adults with a College Education

Summary of Results

- + Elderly Can devote more time to price search and shopping
- Education Higher opportunity costs, less attention to shopping
- + Ethnic Proxy for other causal factors
- **?** Income Dependent upon category
- + FamilySize Larger share of disposable income on groceries, increased returns to search
- + Working Women Tighter constraints on household budget
- House Value Fewer income constraints
- Competitor Dist. Isolated stores less price sensitive
- + Relative Volume Consumers self-select for location and convenience or price and assortment

Micro-Marketing Pricing

Developing Models for every Store x Item

Store-Level Strategies

- The previous results show that there are differences in how consumers respond to price changes across stores
- How do you cater to neighborhood store preferences?
 - Different product assortments
 - Store-level everyday pricing
 - Unique in-store promotions
 - Customized store features

Profitability of TropPrem64 (Cost=\$2.40)

What is the problem with the usual regression approach?

Difficult to acquire reliable estimates for individual products at store-level

Model Dimension

Stores x Brands x Regressors = 100 x 10 x 14 = 14,000 parameters

Data Dimension =

Stores x Brands x Weeks = 100 x 10 x 156 weeks = 156,000 data points

Frustrated use of this data in industry!

What can be done?

Two extremes:

Our Solution:

<u>Shrinkage</u> Exploit commonalties across stores to improve individual store estimates

© 2002 by Alan Montgomery

Hierarchical Bayesian Setup

Shrinkage estimates

- We are exploiting commonalities across the stores to improve the estimates
- Our approach incorporates several new theoretical developments:
 - Shrinkage estimation using Monte Carlo Markov Chain methods
 - General approach to estimation
 - Incorporation of informative priors to specify similarities across stores, model structure, and information about price solution

Visualizing the Priors Effect: Shrinkage toward the Prior

40

Variation in Tropicana Own Price Elasticity

© 2002 by Alan Montgomery

Setting Store-Level National Brand/ Store Brand Price Gaps

Expected Profits for Store # 6

Expected Profits for Store # 58

Effects of a reduction in the price multiplier

Expected Profits from Micro-Marketing Pricing Strategies

Relative to a Uniform Chain Pricing Strategy

#	Description of Pricing Strategy	Expected Profits	Expected Increase	% Change in Expected Profits	Prob[Expected Increase >0]
	Uniform Prices across all Stores	\$3,330,900 (11,900)			
1	Optimal Uniform Strategy	\$3,344,100 (11,600)	+\$13,200 (1,700)	+.4% (.1)	1.00
2	Optimal Micro-Marketing Strategy	\$3,459,000 (19,400)	+\$128,100 (18,800)	+3.9% (.6)	1.00
3	Optimal Micro-Marketing Strategy with constraints at the Chain-level	\$3,481,600 (20,900)	+150,700 (20,200)	+4.5% (.6)	1.00

Note: The standard deviation of the posterior are given in parentheses below the posterior means.

Effects of Price Changes from an Optimal Pricing Strategy

Product

Findings

- Every store is different and has its own price response profile
 - We can identify the price profile of a store using historical data
 - The most important determinants are store demographics (to a lesser extent competitive characteristics)
- Micro-marketing presents a rich environment for store-level pricing
 - Do not simply increase all prices up or down
 - Manage the price gaps between the brands to encourage substitution towards more profitable baskets or products
- Can recommend better or optimal pricing strategies

Experimental Results

An Experimental Approach

- A simple and reliable method (albeit costly) to find a better pricing strategy is through experimentation:
 - Divide 86 stores into 3 treatments: Control (leave prices unchanged), EDLP (decrease prices by 7%), and Hi-Lo (increase prices by 7%)
 - Measure change in profits and movement and compare them to control group

Experimental Results

Pricing Experiment Results

EDLP vs Hi-Lo

- Clearly Hi-lo is much more profitable
 - Why was Dominick's hesitant to implement these results?
- What is driving these results is price sensitivity
 - If products were more price sensitive than EDLP would work (price decreases would dramatically increase sales)
 - What determines price sensitivity?

Elasticity Based Zone Assignments

	Low Price Zone	Medium Price Zone	High Price Zone
High Price Sensitivity	2	14	4
Medium Price Sensitivity	6	25	11
Low Price Sensitivity	1	10	10

Conclusions

Findings

- The Retail Market is moving towards integrated supply-channel and demand-based pricing solutions
- Many challenging modeling problems have been addressed, however there are still much to be done
- Strong potential for increased profitability and efficiency that can benefit both the retailer and the consumer